In the previous section we saw how to improve the anchorage by using bends and hooks. Now we will see some practical situations where bends and hooks can be used.
Here we will discuss about the method of giving the required Ld for the top bars of a cantilever which is projecting from a column. Consider a cantilever beam shown in fig.14.14 below:
Fig.14.14
The top bars of the cantilever should be given the required Ld within the column. The space into which the bar can be extended horizontally is limited because of the limited dimensions of the column. So we can bend the top bars and extend them vertically downwards into the column. The embedded length should be equal to the required Ld as shown in the fig.
As we are using the ‘Limit state method’ for designing the various members, we will be considering the loads at the ‘ultimate state’ ie., the load at the state of impending failure. At this state, the stress in steel will be equal to 0.87fy at the critical section. So it means that it is the ‘unique value’ of Ld that we discussed earlier, which has to be provided.
Another point should be considered while giving such an embedment. We can see that the required Ld consists of a horizontal part and a vertical part. The horizontal part should be given the maximum possible length. By doing this, the full cross sectional strength of the column will be mobilized in resisting the load coming from the cantilever. Thus the column will deflect to a lesser extent. Such an arrangement also gives a greater vertical support (from the concrete in the column) for the bars of the cantilever . So we must avoid the arrangement shown in the fig.14.15 given below:
Fig.14.15
In the figs.14.14 and 14.15 above, a section named as 'critical section' is shown. The significance of critical section can be explained as follows: When we design structural members like beams, slabs etc., we provide steel to take up the stresses induced in the member. The steel resist the external loads by developing stresses within it. We must ensure that these stresses will develop in the steel when the external loads are applied on the member. If there is any slip or displacement for the steel, the required stresses will not develop in it. So we check for the forces that causes such slips and displacements at certain sections called 'critical sections'. And we must ensure that all precautions are taken to prevent any slips at these sections. Such sections are taken at the following points:
• Points of maximum stress. The critical section shown in fig.14.14 and 14.15 are taken at such a point. Because, the maximum stress in this case will be at the face of the support.
• Points within a flexural member where reinforcement bars are cut off or bent.
• Points of inflection
• Points at simple supports.
At the critical section, we check whether the required embedded length is provided for the bar so that the required stress will develop in it. As mentioned earlier, we will learn more about this in the topic of 'curtailment of bars'
Bends and hooks for compression reinforcement.
We have seen how to calculate the development length in compression (We did this discussion based on a doubly reinforced cantilever beam shown in fig.14.5). Just as in the case of tension bars, for compression bars also, situations can arise where we will need to provide bends or hooks. When bends and hooks are provided for the bars in compression, only their 'projected length' can be considered for the purpose of development length. This is shown in fig.14.16 below:
Development length in compression when Bends and Hooks are provided
So we have completed the discussion on Anchorage and Development length, and the use of bends and hooks. The following solved example will demonstrate their application.
Anchorage for stirrups and ties
We have learned about stirrups in chapter 13. There we saw the shapes of various stirrups. We have seen that stirrups are given around the main bars of the beam. A 3D view of a stirrup was shown in fig.13.27. But just enclosing the main bars will not be sufficient. When the tensile force develop in the bar of the stirrup, it may open out. To prevent this from happening, the ends of the stirrup should be properly anchored, so that the concrete can exert sufficient grip at the ends of the stirrup and prevent it from opening out. The code specifies three methods of providing the required anchorage at the ends of the stirrup. We will discuss each of them now.
Method 1: using 90o bend
In this, we use a type of bending, similar to the standard 90o bend. We know that one end of the stirrup is at the top horizontal segment, and the other end is at the left vertical segment. The bend is given at both these ends. This is shown in the fig.14.17 below:
Fig.14.17
Anchorage for stirrups: Method 1
The difference between this and the standard 90o bend is that the extension CD beyond the bent portion should be 8φ instead of 4φ. Thus the length of CD in the above figs. is shown as 8φ. A 3D view of the resulting final shape of the stirrup is shown in fig.14.18 below:
Fig.14.18
Resulting shape of stirrup
[In the above stirrup, the radius of the bends at the four corners seems to be very large. It is indeed very large because we have followed the exact rules for a 'standard 90o bend', where the radius of bend should not be less than 4φ for deformed bars. In later sections we will see that, for the bends in stirrups, this radius can be reduced. We will learn the reason for this reduction when we discuss 'bearing stress'. At present we have obtained a basic understanding about the method of providing anchorage at the ends of stirrups by using the 'Method 1: using 90o bend'.]
We will discuss about the other two methods in the next section.
No comments:
Post a Comment