Showing posts with label Over reinforced doubly reinforced section. Show all posts
Showing posts with label Over reinforced doubly reinforced section. Show all posts

Friday, November 6, 2015

Chapter 12 (cont..4) - Comparison of sections

In the previous section, we completed the 1st cycle in the analysis of the beam section. We obtained the xu to be used in the next cycle as xu =212.335 mm. Now we will continue the iteration process:

Cycle 2:
When the NA is in the position xu =212.335, εsc (Using Eq12.1) =0.00271 The corresponding stress fsc is obtained from from the same table for Fe 415 steel:
0.00241   342.800
0.00271   350.483
0.00276   351.800. So we get fsc =350.483 N/mm2.

Similarly, when the NA is in this position, εst (using Eq.3.15) =0.00303. The corresponding stress fst is obtained from the same table for Fe 415 steel: 
0.00276   351.800
0.00303   354.140
0.00380  360.900. So we get fst =354.140 N/mm2. With these stress values, we can calculate the forces:

Cu =Cus +Cuc =(fsc -0.447fck)Asc + 0.362fckbxu = (350.483 – 0.447 x 20) x 402.12 + 2172.00 x212.335  = 598533.964 N

T=fstAst =354.140 x1722.38 = 609963.349 N

These forces are not equal. So we don't have an equilibrium. What is the value of xu if these were indeed the stresses? We can calculate this by writing the equality: Cu = Tu. Thus we write:

(350.483 – 0.447 x 20) x 402.12 + 2172.00 xu = 609963.349
From this we get = xu =217.598 mm. We will take the average of this xu and the value of xu used in this cycle. It is equal to 0.5 x(217.598 +212.335) =214.966 mm. This can be used as the trial value for the next cycle.

Cycle 3:
When the NA is in the position xu =214.966, εsc (Using Eq12.1) =0.00272
. The corresponding stress fsc is obtained from from the same table for Fe 415 steel:
0.00241   342.800
0.00272   350.732
0.00276   351.800. So we get fsc =350.483 N/mm2.

Similarly, when the NA is in this position, εst (using Eq.3.15) =0.00295. The corresponding stress fst is obtained from the same table for Fe 415 steel: 
0.00276   351.800
0.00295   353.441
0.00380  360.900. So we get fst =353.441 N/mm2. With these stress values, we can calculate the forces:

Cu =Cus +Cuc =(fsc -0.447fck)Asc + 0.362fckbxu = (350.732 – 0.447 x 20) x 402.12 + 2172.00 x214.966  = 604348.790 N

T=fstAst =353.441 x1722.38 = 608759.311 N

These forces are not equal. So we don't have an equilibrium. What is the value of xu if these were indeed the stresses? We can calculate this by writing the equality: Cu = Tu. Thus we write:

(350.732 – 0.447 x 20) x 402.12 + 2172.00 xu = 608759.311
From this we get = xu =216.997 mm. We will take the average of this xu and the value of xu used in this cycle. It is equal to 0.5 x(216.997 +214.966) =215.982 mm. This can be used as the trial value for the next cycle. 

Cycle 4:
When the NA is in the position xu =215.982, εsc (Using Eq12.1) =0.00272
. The corresponding stress fsc is obtained from from the same table for Fe 415 steel:
0.00241   342.800
0.00272   350.827
0.00276   351.800. So we get fsc =350.827 N/mm2.

Similarly, when the NA is in this position, εst (using Eq.3.15) =0.00292. The corresponding stress fst is obtained from the same table for Fe 415 steel: 
0.00276   351.800
0.00292   353.176
0.00380 → 360.900. So we get fst =353.176 N/mm2. With these stress values, we can calculate the forces:

Cu =Cus +Cuc =(fsc -0.447fck)Asc + 0.362fckbxu = (350.827 – 0.447 x 20) x 402.12 + 2172.00 x215.982  = 606592.039 N

T=fstAst =353.441 x1722.38 = 608302.526 N

These forces are approximately equal. So we have an equilibrium. The final values can be taken as:
• fsc =350.827 N/mm2  • fst =353.441 N/mm2 • xu =215.982 mm

[It may be noted that fig.12.5 is drawn only for getting a good understanding about the extreme positions of the NA. It is not necessary to draw such a fig. in an analysis problem.]

Now we can obtain MuR 
MuR = 0.362fckbxu(d - 0.416xu) + fsc - 0.447fckAsc(d-d')
143618673.976 + 47853116.410 =191471790.385 Nmm  =191.5 kNm

Also xu = 215.982 mm. xu,max = 0.4791 x 396 =189.724 mm. So we get xu > xu,max. So this is an over reinforced section. 
Thus we complete the analysis process.

Comparison between 'Under reinforced' and 'Over reinforced' Doubly reinforced sections.


Let us compare the sections in the last two solved examples:
• Solved example 2:
Given b =300 mm, d =396 mm, d' =50 mm, Ast =1722.38 mm2Asc =628.32 mm2fy =415 N/mm2fck =20 N/mm2xu =188.527 mm, xu,max =189.72 mm, MuR =203.53 kNm, xu < xu,max, Under reinforced.

• Solved example 3:
b =300 mm, d =396 mm, d' =48 mm, Ast =1722.38 mm2Asc =402.12 mm2fy =415 N/mm2fck =20 N/mm2xu =215.982 mm, xu,max =189.72 mmMuR =191.5 kNm. xu > xu,max, Over reinforced.

We can see that all the properties except Asc are the same. The second section have a lesser Asc than the first. The second section is Over reinforced, while the first section is under reinforced. Let us now discuss the reason for this.

Mulim of both the sections will be the same. It is given by:

Thus Mulim =130.66 kNm 

Ast,lim of both the sections will be the same. It is given by 

Thus Ast,lim = 1141.67 mm2.
As Ast is same for both sections, ΔAst will also be the same (Eq.11.8):
Ast = Ast,lim + ΔAst
Thus we get ΔAst = 1722.38 -1141.67 =580.71 mm2.

If the section under consideration is an under reinforced one, then all the Ast would have yielded at the ultimate state. So the stress in it = 0.87fy, and the force ΔTu = 0.87fyAst =209666.068 N. The quantity of compression steel Asc must be such that, the force developed in it should balance ΔTu
So, next we find the stress fsc in Asc: For this we can use Table 11.1
d'/d = 48/396 =0.121.

0.100   342.90
0.121   347.87
0.150   342.40. So we get fsc =347.87 N/mm2.

So the force in Asc =fsc - 0.447fckAsc = (347.87 -0.447 x20)Asc

[It may be noted that Table.11.1 can be used to find fsc only in the condition when tension steel has yielded. If this steel has not yielded at the ultimate state, we have to use strain compatibility to find fsc]

This must be equal to the force in ΔTu. So we can write 209666.068 = (347.87 -0.447 x20)Asc. From this we get Asc = 618.61 mm2. This is the 'ideal' quantity of Asc. If we provide this exact quantity, xu will be equal to xu,max. But as explained based on fig.11.4 , this exact quantity cannot be provided. The actual quantity that we give should be greater than 618.61 mm2. When we give this higher quantity, there will be 'more material' towards the top side of the beam, and so the NA will move up wards. Thus xu will decrease from xu,max, and so, it will be an under reinforced section. If Asc is less than 618.61, then the NA will move downwards, and it will be an over reinforced section.

In the two solved examples, 
• The first one have an Asc =628.32 >618.61 mm2. So it is an under reinforced section.
• The second one have an Asc =402.12 <618.61 mm2. So it is an over reinforced section.

This completes the comparison between the two sections. In the next chapter, we will discuss a new topic: 'Shear in beams'.

PREVIOUS
                                                         


Copyright ©2015 limitstatelessons.blogspot.com - All Rights Reserved

Thursday, November 5, 2015

Chapter 12 (cont..3) - Analysis of an over reinforced doubly reinforced beam section

In the previous section, we analysed a doubly reinforced beam section. Now we will  analyse a doubly reinforced beam section which is 'over reinforced'. We analyse the same section which we saw in the previous example. With a minor difference: The compression steel now consists of 2-#16 instead of 2-#20.

Solved example 12.3
Determine the Ultimate moment of resistance MuR of the beam section shown below. Given b =300 mm, d =396 mm, d' =48 mm, Ast =1722.38 mm2Asc =402.12 mm2fy =415 N/mm2fck =20 N/mm2 
Analysis of a doubly reinforced over reinforced beam section by limit state method
Solution:
So we are going to analyse the given beam section to find the stresses, strains, forces and depth of NA at the ultimate state. Our main aim is to determine the MuR. We will see the various steps involved in the analysis in detail:

Initially, we assume that 'both the tension steel and the compression steel will yield at the ultimate state'. 


We will now check if this really happens at the ultimate state. For making this check, first we find xu the depth of NA. We have assumed that the tension steel has yielded. So the stress in tension steel =0.87fy. Thus the force in tension steel =T=0.87fyAst = 0.87 x 415 x 1722.38 =621865.299 N

We have assumed that the compression steel has also yielded. So the stress in compression steel =fsc =0.87fy. Thus the force in compression steel =Cus = (fsc -0.447fck)Asc = (0.87fy – 0.447 x 20) x 402.12 =141590.473 N

Force in concrete = Cuc = 0.362fckbxu = 2172.00xu

Equating the tensile and compressive forces we get: 141590.473 + 2172.00xu = 621865.299 N - - - (1) 
So we get xu = 221.121 mm - - - (2)

We have learned the method for calculating (from the strain diagram) the strain εsc  at the level of Asc. We use the two similar triangles above the NA. The equation is Eq.12.1
From this we get εsc =0.00274 - - - (3)

Similarly, we know how to calculate the strain εst from the strain diagram. The equation  is Eq.3.14 :

Rearranging this, we get:

Note that we are using the equation for εst,u because we have assumed that the tension steel has yielded. Using this equation we get εst = 0.00277.

Now we compare the values with the yield strain ε*st. We know that, for Fe415 steel, ε*st = 0.00380. Comparing the values, we find that εsc < ε*st and εst < ε*st

[There is another method to prove that εst is less than ε*st: We know that, for Doubly reinforced sections also, if xu  xu,max, the tension steel would have yielded. In our case xu,max =0.4791 x 396 =189.724 mm. In the above calculations, we have used xu =221.121 which is greater than xu,max. So for this value of xu, the steel would not yield, and so, εst will indeed be less than ε*st.]

So, if at the ultimate state, the NA is at the position xu = 221.12 mm, the tension steel and compression steel would never yield. This means that:
• The stress in Ast is not 0.87fy
• The stress in Asc is not 0.87fy
So the equality in (1) is not valid. Thus the value of xu = 221.121 mm is not correct.

As xu > xu,max, it is an over reinforced section. We have to use iteration method using strain compatibility. We want an improved value of xu. We will try to obtain the new value, based on the value that we are having.

Fig.12.5
Positions of NA

In the fig above, 'Line p' shows the position of the NA when xu = xu,max =189.724 mm. The NA of our beam section will never occupy this position because, it is an 'Over reinforced section'. The other 'Line q' shows the position when the tension steel has yielded. This position will also never occur because an over reinforced section will fail (by compression of concrete in the extreme fibre) before the yielding of it's tension steel occurs. The actual NA lies some where between these two lines. So we can take the average of these two values as the initial 'trial value'. Thus xu for the 1st cycle = 0.5 x(189.724 +221.121) =205.422 mm.

Cycle 1:
When the NA is in the position xu =205.422, εsc (Using Eq12.1) =0.00268. The corresponding stress fsc is obtained from from the table for Fe 415 steel: 
0.00241   342.800
0.00268   349.799
0.00276   351.800. So we get fsc =349.799 N/mm2.

Similarly, when the NA is in this position, εst is obtained using Eq.3.15 : 
Rearranging this we get:

[The equation involving xu,o and εst,o is used here because the section is over reinforced. But it may be noted that Eq.3.14 and 3.15 are the same with only the subscripts changed from 'u' to 'o'.]

So we will get εst =0.00325. The corresponding stress fst is obtained from the same table for Fe 415 steel: 
0.00276   351.800
0.00325   356.062
0.00380 → 360.900. So we get fst =356.062 N/mm2. With these stress values, we can calculate the forces:

Cu =Cus +Cuc =(fsc -0.447fck)Asc + 0.362fckbxu = (349.799 – 0.447 x 20) x 402.12 + 2172.00 x205.422  = 583243.352 N

T=fstAst =356.062 x1722.38 = 613273.929 N

These forces are not equal. So we don't have an equilibrium. What is the value of xu if these were indeed the stresses? We can calculate this by writing the equality: Cu = Tu. Thus we write:

(349.799 – 0.447 x 20) x 402.12 + 2172.00 xu = 613273.929.
From this we get = xu =219.249 mm. We will take the average of this xu and the value of xu used in this cycle. It is equal to 0.5 x(205.422 +219.249) =212.335 mm. This can be used as the trial value for the next cycle.

So we have completed one cycle. We will see the  rest of the cycles in the next section.


PREVIOUS
                                                         

            Copyright ©2015 limitstatelessons.blogspot.com- All Rights Reserved