Tuesday, November 3, 2015

Chapter 12 (cont..2) - Analysis of a doubly reinforced beam section

In the previous section, we did the analysis of a doubly reinforced beam section, and calculated it's MuR. Here we will see another example.

Solved example 12.2
Determine the Ultimate moment of resistance MuR of the beam section shown below. Given b =300 mm, d =396 mm, d' =50 mm, Ast =1722.38 mm2Asc =628.32 mm2fy =415 N/mm2fck =20 N/mm2 

Solved example demonstrating the steps involved in the analysis of a doubly reinforced beam section by limit state method.

Solution:
So we are going to analyse the given beam section to find the stresses, strains, forces and depth of NA at the ultimate state. Our main aim is to determine the MuR. We will see the various steps involved in the analysis in detail:

Initially, we assume that 'both the tension steel and the compression steel will yield at the ultimate state'. 


We will now check if this really happens at the ultimate state. For making this check, first we find xu the depth of NA. We have assumed that the tension steel has yielded. So the stress in tension steel =0.87fy. Thus the force in tension steel =T=0.87fyAst = 0.87 x 415 x 1722.380 =621865.29 N

We have assumed that the compression steel has also yielded. So the stress in compression steel =fsc =0.87fy. Thus the force in compression steel =Cus = (fsc -0.447fck)Asc = (0.87fy – 0.447 x 20) x 628.320 =221237.755 N

Force in concrete = Cuc = 0.362fckbxu = 2172.0xu

Equating the tensile and compressive forces we get: 221237.755 + 2172.0xu = 621865.29 - - - (1) 
So we get xu = 184.451 mm - - - (2)

Let us calculate the value of εsc based on this xu.
We have learned the method for calculating the strain εsc at the level of Asc. We use the two similar triangles above the NA. The equation is Eq.12.1
From this we get εsc =0.002551 - - - (3)

Similarly, we know how to calculate the strain εst from a strain diagram. The equation  is Eq.3.14 :

Rearranging this, we get:

Note that we are using the equation for εst,u because we have assumed that the tension steel has yielded. Using this equation we get εst = 0.00401

Now we compare the values with the yield strain ε*st. We know that, for Fe415 steel, ε*st = 0.00380. Comparing the values, we find that εst > ε*st

[There is another method to prove that εst is greater than ε*st: We know that, for Doubly reinforced sections also, if xu  xu,max, the tension steel would have yielded. In our case xu,max =0.4791 x 396 =189.724 mm. In the above calculations, we have used xu =184.451 which is less than xu,max. So for this value of xu, the steel would have yielded and so, εst will indeed be greater than ε*st.]

But εsc < ε*st. This means that if at the ultimate state, the value of xu is indeed 184.451 mm, the tension steel will yield as we have assumed. But the compression steel will never yield for that position of NA. This means that:
The stress in Asc is not 0.87fy
So the calculated value of 221237.755 N for Cus is not correct, and the equality in (1) is not valid. Thus the value of xu = 184.451 mm is not correct.

We have to use iteration method using strain compatibility. We want an improved value of xu. We will try to obtain the new value, based on the value that we are having.

The value that we are having for xu is 184.451 mm from (2)εsc corresponding to this xu is 0.00255. from (3). Now we want the fsc corresponding to this εsc. This we will get from the table for Fe 415 steel:

0.002410   342.800
0.002551   346.432
0.002760   351.800

So fsc = 346.432 N/mm2
Thus, if xu = 184.451 mm, fsc = 346.432 N/mm2

We will not get equilibrium with these values because if there is to be equilibrium with xu =184.451fsc must be equal to 0.87fy =361.08 N/mm2. But we have only 346.432 N/mm2 for fsc. So what should be the value of xu if fsc is 346.432 N/mm2 ? For finding that, we do the 1st cycle:

Cycle 1:
we can write a new equality:
(346.432 – 0.447 x 20) x 628.32 + 2172.0 xu = 621865.29 N - - - (4).
From this we get xu = 188.680 mm. This is the value of xu which is needed for equilibrium if the stress fsc = 346.432 N/mm2.

But if in our beam section, xu = 188.680, then using Eq.12.1, we will get εsc = 0.00257. Now use the table for Fe415:

0.002410   342.800
0.002573   346.979
0.002760   351.800

So fsc = 346.979 N/mm2

If xu is 188.680 and fsc =346.432 N/mm2, we would have obtained equilibrium. But unfortunately, for our beam section, when xu = 188.680, fsc is never equal to 346.432 N/mm2. It is 346.979 N/mm2. So we don't have an equilibrium. We need an improved value for xu.

Cycle 2:
So what should be the value of xu if fsc is 346.979 N/mm2 ? 
For this, we will write a new equality:
(346.979 – 0.447 x 20) x 628.32 + 2172.0 xu = 621865.29 N
From this we get xu = 188.522 mm. This is the value of xu which is needed for equilibrium if the stress in fsc = 346.979 N/mm2.

But if in our beam section, xu = 188.522, then using Eq.12.1, we will get εsc = 0.002572. Now use the table for Fe415:

0.002410   342.800
0.002572   346.959
0.002760   351.800

So fsc = 346.959 N/mm2
If xu is 188.522 and fsc is 346.979 N/mm2, we would have obtained equilibrium. But unfortunately, for our beam section, when xu = 188.522fsc is never equal to 346.979 N/mm2. It is 346.959 N/mm2. So we don't have an equilibrium. We need an improved value for xu.

Cycle 3:
So what should be the value of xu if fsc is 346.959 ? 
For this, we will write a new equality:
(346.959 – 0.447 x 20) x 628.32 + 2172.0 xu = 621865.29 N - - - (4)
From this we get xu = 188.527 mm. This is the value of xu which is needed for equilibrium if the stress in fsc = 346.959 N/mm2.

If in our beam section, xu = 188.527, then using Eq.12.1, we will get εsc = 0.002572. Now use the table for Fe415:

0.002410   342.800
0.002572   346.959
0.002760   351.800

[In fact, it is not needed to do the above interpolation because the strain value εsc = 0.002572 is the same as in the previous cycle 2.] 

So fsc = 346.959 N/mm2. This time we are lucky. We have xu = 188.527 mm and fsc = 346.959 N/mm2. So we have an equilibrium, and the correct value of xu is 188.527 mm.

[It may be noted that in the above cycles, the stress fst in tension steel is always taken as 0.87fy. This is because in all the cycles, xu is less than xu,max. But the stress fsc in compression steel varies with the position of xu in each cycle.] 

The cycles that we did above can be summarized as follows:
• Assume fsc =fst =0.87fy =361.08 N/mm2
• If fst = fsc = 0.87fyxu = 184.451 mm
• So, if fsc =fst =0.87fy =361.08, AND xu = 184.451, there would be equilibrium
• But when xu = 184.451, fst is indeed equal to 0.87fy =361.08. But fsc = 346.432 

• Assumption that fst = 0.87fy is correct
• Assumption that fsc = 0.87fy is wrong
So use strain compatibility for calculate actual fsc

Cycle 1:
• If fsc = 346.432, AND xu = 188.680, there would be equilibrium
• But when xu = 188.680, fsc = 346.979

Cycle 2:
• If fsc = 346.979, AND xu = 188.522, there would be equilibrium
• But when xu = 188.522, fsc = 346.959

Cycle 3:
• If fsc = 346.959, AND xu = 188.527, there would be equilibrium
• When xu = 188.527, fsc is indeed equal to 346.959
• So final value of xu =188.527 mm. 

Now we can obtain MuR 
MuR = 0.362fckbxu(d - 0.416xu) + fsc - 0.447fckAsc(d-d')
=203.53 kNm

xu = 188.527 mm. xu,max = 0.4791 x 396 =189.724 mm. So we get xu < xu,max. Hence OK

In the next section we will see the analysis example of an 'Over reinforced' Doubly reinforced section.

PREVIOUS
                                                         

            Copyright ©2015 limitstatelessons.blogspot.com - All Rights Reserved

No comments:

Post a Comment